
6. AUTHOR(S)

REPORT DOCUMENTATION PAGE
Pubic reporting burton for this cotecbon of information is estimated to average 1 texr per response, ndud^ thetine
nathenna and maintaining the data needed, and completing and renewng the colecSon of information. Sere) cornrnen
ofWormation, ndudro suggestions for reducing this buro>n to WashirigjonHead»jarters Service. Wrecttrate fa Info
1215 Jefferson Davis HWwrayT Siite «04, Arington, VA 22202-4302, and to the Office of Management and Budget.
Paperwork Reduction Project (070M188) Wastsngton. DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

AFRL-SR-BL-TR-00-

REPORT DATE (DD-MM-YYYY)

25-Q9-2QQQ

2. REPORT DATE

Final Technical
4. TITLE AND SUBTITLE

Stochastic Scheduling and Planning
Using Reinforcement Learning

Barto, Andrew G
Computer Science Department
140 Governors Drive
University of Massachusetts
Amherst, MA 01003

3. DATES COVERED (From - To)

l-Jun-96 to 30-May-OO
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F49620-96-1-0254

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

2304/ AX
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Massachusetts
Computer Science Department
Amherst, MA 01003

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research
801 N Randolph St Room 732
Arlington, VA 22203-1977

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR/NM
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Apr
-üi:

, >. J! release,
13. SUPPLEMENTARY NOTES

14. ABSTRACT This project investigated the extension of reinforcement learning (RL) methods to large-scale optimization
problems relevant to Air Force operations planning, scheduling, and maintenance. The objectives of this project were to:
1) investigate the utility of RL on large-scale logistics problems; 2) extend existing RL theory and practice to enhance the
ease of application and the performance of RL on these problems; and 3) explore new problem formulations in order to
take nwirnal advantage of RL methods. A method using RL to modify local search cost functions was developed and
shown to yield significant improvement over a traditional local search method on a core vehicle routing problem. A new
method for stochastic dynamic optimization was studied, a theoretical result proven, and utility demonstrated using a
simulated aerial mission planning task. A learning-based method for optimizing subproblem selection in divide-and-
conquer approaches was developed and demonstrated on graph-coloring and on a multiple-vehicle mission planning task.
15. SUBJECT TERMS

Reinforcement learning, Combinatorial optimization, Scheduling,

Vehicle routing, Search, Learning

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF PAGES

41

19a. NAME OF RESPONSIBLE PERSON

Andrew G. Barto
19b. TELEFONE NUMBER {Include am cod»)

(413) 545-2109
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18

20010124 129

FINAL TECHNICAL REPORT: F49620-96-1-0254

STOCHASTIC SCHEDULING AND PLANNING USING REINFORCEMENT LEARNING

Principal Investigator: Andrew G. Barto

Abstract-This project investigated the extension of reinforcement learning (RL) methods
to large-scale optimization problems relevant to Air Force operations planning, schedul-
ing, and maintenance. The objectives of this project were to: 1) investigate the utility
of RL on large-scale logistics problems; 2) extend existing RL theory and practice to
enhance the ease of application and the performance of RL on these problems; and 3)
explore new problem formulations in order to take maximal advantage of RL methods. A
method using RL to modify local search cost functions was developed and shown to yield
significant improvement over a traditional local search method on a core vehicle routing
problem. A new method for stochastic dynamic optimization was studied, a theoretical
result proven, and utility demonstrated using a simulated aerial mission planning task.
A learning-based method for optimizing subproblem selection in divide-and-conquer ap-
proaches was developed and demonstrated on graph-coloring and on a multiple-vehicle
mission planning task.

EXECUTIVE SUMMARY

Reinforcement learning (RL) is emerging as a promising collection of algorithms
for approximating solutions to large-scale stochastic optimization problems that are in-
tractable for conventional exact methods (Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998). RL combines stochastic dynamic programming methods for solving Markov
decision processes with methods developed by artificial intelligence and neural network
researchers. This project investigated the extension of RL methods to large-scale opti-
mization problems relevant to Air Force operations planning, scheduling, and mainte-
nance. The specific objectives of this project were: 1) to investigate the utility of RL on
large-scale logistics problems; 2) to extend existing RL theory .and practice to enhance
the ease of application and the performance of RL on these problems; and 3) to explore
new problem formulations in order to take maximal advantage of RL methods.

Many planning and scheduling problems are customarily formulated as discrete opti-
mization problems. For most large-scale discrete optimization problems, one must settle
for suboptimal solutions that can be discovered in a reasonable amount of time. The idea
was investigated that when many different instances of a problem class have to be solved
routinely, an optimization algorithm can actually learn from its experiences how to obtain
better solutions to new instances of the problem, and how to obtain them more efficiently.
The end result of learning is an enhanced optimization algorithm specifically tailored to
perform efficiently on the class of problems that supplied the training experiences. To
accomplish this, one views local search as a stochastic optimal control problem on which
performance can be improved by applying RL. The standard hill-climbing function—the
standard cost measure of a problem—is replaced with a cost function that has been
learned. Significant decreases in final solution cost are possible using this approach.

Several formulations of this approach were developed and evaluated using the follow-
ing vehicle-routing problem. N packages (supplies, people, etc.) need to be transported
from their current locations to desired destinations by a single vehicle. The vehicle must
be routed so that it starts from its base, visits all pick-up and drop-off-sites, and returns
to the base, with the obvious constraint that a package has to be picked up before it can
be dropped off. This tour should be of minimal length. It is assumed that the distances
between pick-up and drop-off locations are represented by a symmetric Euclidean dis-
tance matrix. This is commonly known as the Dial-A-Ride Problem, or DARP, and is a
core vehicle routing problem that often plays a role in more realistic logistics scenarios.

A number of algorithms were compared on DARP for a variety of sizes (number
of sites). The best-performing algorithm resulting from learning produced significantly
better results than its natural competitors. It is somewhat involved to compare various
algorithms of this type since their utility depends on a combination of how long they
are allowed to run and the cost of the best tour they find in that time. Given more
running time, any algorithm can usually find a lower-cost tour. To provide an overview
of the results, however, consider tours that take place within a square with sides of 100
miles with the base in the middle. From results in the literature, for any given number

Markov decision process (MDP) talcing actions at a much finer time scale. By taking
both perspectives on a single system one can analyze it at higher levels, yet still make
changes at the lowest levels. Options permit planning and learning simultaneously at
a variety of times scales, and toward a variety of sub-tasks, substantially increasing the
efficiency and abilities of RL systems.

Using this framework, a method was developed that has the potential to be effective
in a variety planning and re-planning problems. As an illustration, an abstract mis-
sion planning scenario was studied that was motivated by the very difficult problems
associated with the need to dynamically re-plan a mission while it is in progress due
to the occurrence of incompletely predictable events. A mobile sensor platform, e.g., a
uninhabited aerial vehicle (UAV), with limited fuel takes off from its base to observe as
many as possible of a set of sites, subject to random fluctuations in the availability of the
sites for observation. For example, the sites may be obscured by clouds or other weather
phenomena that are only partly predictable and that may change during the mission.
As conditions change, the new conditions are made available to the UAV, which must
rapidly re-plan the remaining portion of the mission to take them into account. The
overall task is to fly from a base, observe as many designated sites as possible, and then
return to the base without running out of fuel.

A discrete-event simulation of this task was implemented and a variety of computa-
tional experiments were conducted to compare various re-planning methods. The state
of the system is described by several variables: the current location of the UAV, its fuel
level, the sites it has observed so far, and the current weather at each of the remain-
ing unobserved sites. The primitive control actions are directions of movement (there
is no inertia). Even in this very simplified formulation, the state-action space has ap-
proximately 24.3 billion elements (assuming 100 discretization levels of the continuous
variables) and is intractable by normal stochastic dynamic programming methods. On
the other hand, if instead of the low-level primitive directional actions, the action set
consists of six high-level actions—options—to fly directly to one of the sites (including
the base), the resulting problem (an SMDP) has only 874,800 elements for which it is
feasible to compute an optimal policy using standard stochastic dynamic programming.
Unfortunately, such a policy is based on executing each selected option to completion
so that decisions can only be made when a site is reached. Clearly, the ability to make
decisions at a finer time scale can produce better performance, but, as pointed out above,
it is intractable to compute an optimal policy in the primitive actions.

The method developed here, called termination improvement, is able to perform the
feasible planning at the option level (by solving the SMDP), but during execution, con-
tinually re-evaluates the options at a fine time scale using the value function obtained in
solving the SMDP. Suppose at time t the UAV is in the process of executing an option
o, e.g., is flying to a particular site s. In re-evaluating the options at time t (based on
the state at t), suppose another option, o', evaluates higher than o. Under termination
improvement, the UAV would immediately switch to o', i.e., begin flying toward another
site, whereas the optimal option-level policy would have it continue flying to s. It is pos-

for algorithm development for both deterministic and stochastic combinatorial optimiza-
tion, v

In summary, these results demonstrate that the idea of enhancing optimization pro-
cedures through the use of reinforcement learning and other machine learning techniques
has significant promise as a means for improving optimization performance.

Publications Resulting from this Project:

McGovern, A., Moss, E., Barto, A. G. (1999).. "Basic-block Instruction Scheduling Using
Reinforcement Learning and Rollouts." Proceedings of the International Joint Conference
on Artificial Intelligence 1999 (IJCAI99) workshop on Statistical Machine Learning for
Large-Scale Optimization, Stockholm, July 1999.

McGovern, A., Moss, E., Barto, A. G. (in press). "Scheduling Straight-Line Code Using
Reinforcement Learning and Rollouts." Machine Learning special issue on Reinforcement
Learning.

McGovern, A., Precup, D., Ravindran, B., Singh, S., and Sutton, R. S. (1998). "Hi-
erarchical Optimal Control of MDPs." In Proceedings of the Tenth Yale Workshop on
Adaptive and Learning Systems, pp. 186-191.

Moll, R., Perkins, T., Barto, A. G. (1999). "Enhancing Discrete Optimization with Re-'
inforcement Learning: Case Studies Using DARP." In Proceedings of the International
Joint Conference on Artificial Intelligence 1999 (IJCAI99) workshop on Statistical Ma-
chine Learning for Large-Scale Optimization, Stockholm, July 1999.

Moll, R., Barto, A. G., Perkins, T. J., and Sutton, R. S. (1999). Learning instance-
independent value functions to enhance local search. In Advances in Neural Information
Processing Systems: Proceedings of the 1998 Conference. MIT Press, pp. 1017-1023.

Moll, R., Perkins, T., Barto, A. G. (2000). "Machine Learning for Subproblem Selection."
In Proceedings of the Seventeenth International Conference on Machine Learning, P.
Langley, ed., Morgan Kaufmann, San Francisco CA, pp. 615622.

Precup, D., Sutton, R. S. (1998). "Multi-time Models for Temporally Abstract Plan-
ning." In Advances in Neural Information Processing Systems: Proceedings of the 1997
Conference. MIT Press, pp. 1050-1056.

Precup, D.., Sutton, R. S., Singh, S. P. (1998). "Theoretical Results on Reinforcement
Learning with Temporally Abstract Options." In Proceedings of the Tenth European Con-
ference on Machine Learning. Springer-Verlag, pp. 382-393.

Randlov, J., Barto, A. G., Rosenstein, M. T. (2000). "Combining Reinforcement Learn-
ing with a Local Control Algorithm." In Proceedings of the Seventeenth International
Conference on Machine Learning, P. Langley, ed., Morgan Kaufmann, San Francisco
CA, pp. 775-782.

1 Learning Instance-Independent Value Functions to Enhance
Local Search

Combinatorial optimization is of great importance in computer science, engineering, and
operations research. We investigated the use of RL to enhance traditional local search
optimization (hillclimbing). Since local search is a sequential decision process, RL can
be used to improve search performance by learning an evaluation function that predicts
the outcome of search and is therefore able to guide search to low-cost solutions better
than can the original cost function.

Three approaches to using RL to improve combinatorial optimization have been de-
scribed in the literature. One is to learn a value function over multiple search trajectories
of a single problem instance. As the value function improves in its predictive accuracy,
its guidance enhances additional search trajectories on the same instance. Boyan and
Moore's STAGE algorithm (Boyan and Moore 1997, Boyan 1998) falls into this category,
showing excellent performance on a range of optimization problems. Another approach is
to learn a value function off-line and then use it over multiple new instances of the same
problem. Zhang and Dietterich's (1995) application of RL to a NASA space shuttle mis-
sion scheduling problem takes this approach (although it does not strictly involve local
search as we define it below). A key issue here is the need to normalize state represen-
tations and rewards so that trajectories from instances of different-sizes and difficulties
yield consistent training data. In each of the above approaches, a state of the RL prob--
lern is an entire solution (e.g., a complete tour in a Traveling Salesman Problem (TSP))
and the actions select next solutions from the current solutions' neighborhoods. A third
approach, described by Bertsekas and Tsitsiklis (1996), uses a learned value function for.
guiding the direct construction of solutions rather than for moving between them.

We first focused on combining aspects of first* two of these approaches with the goal of
carefully examining how well the TD(A) algorithm (see Sutton and Barto. 1998) can learn
an instance-independent value function for a given problem to produce an enhanced local
search algorithm applicable to all instances of that problem. Our approach combines an
off-line learning phase with STAGE'S alternation between using the learned value function
and the original cost function to guide search. We studied this algorithm's application
to a somewhat complicated variant of TSP known as the Dial-A-Ride Problem (DARP),
which exhibits some of the non-uniform structure present in real-world transportation
and logistics problems. We then examined the use of "rollouts" (Tesauro and Galperin,
1996; Bertsekas et al, 1997) to enhance a constructive DARP algorithm due to Kubo and
Kasugai (1990) (Section 1.5). We also proposed and experimented with a new algorithm
which we call the expected improvement algorithm (Section 1.6). It uses the same control
structure as Boyan's (1998) STAGE but learns a different hill-climbing function—one that
seeks to maximize the expected improvement over the best-so-far solution, rather than
just the expected value of hill-climbing. We report results obtained with this algorithm
on DARP.

Dial-A-Ride problem.

1.2 The Dial-a-Ride Problem

The Dial-a-Ride Problem (DARP) has the following formulation. A van is parked at a
terminal. The driver receives calls from N customers who need rides. Each call identifies
the location of a customer, as well as that customer's destination. After the calls have
been received, the van must be routed so that it starts from the terminal, visits each
pick-up and drop-off site in some order, and then returns to the terminal. The tour
must pick up a passenger before eventually dropping that passenger off. The tour should
be of minimal length. Failing this goal—and DARP is NP-complete, so it is unlikely
that optimal DARP tours will be found easily—at least a good quality tour should
be constructed. We assume that the van has unlimited capacity and that the distances
between pick-up and drop-off locations are represented by a symmetric Euclidean distance
matrix.

We use the notation
0 12-13-3-2

to denote the following tour: "start at the terminal (0), then pick up 1, then 2, then drop
off 1 (thus: —1), pick up 3, drop off 3, drop off 2 and then return to the terminal (site
0)." Given a tour s, the 2-opt neighborhood of s, A2(s), is the set of legal tours obtainable
from s by subsequence reversal. For example, for the tour above, the new tour created
by the following subsequence reversal

01/2-13/-3-2 —»013-12-3-2

is an element of A2{T). However, this reversal

012/ -13 -3/ -2 —► 012 -33 -1 -2

leads to an infeasible tour, since it asserts that passenger 3 is dropped off first, then
picked up. The neighborhood structure of DARP is highly non-uniform, varying between
A2 neighborhood sizes of O(N) and 0(N2).

Let s be a feasible DARP tour. By 2-opt(s) we mean the tour obtained by first-
improvement local search using the A2 neighborhood structure (presented in a fixed,
standard enumeration), with tour length as the cost function. As with TSP, there is a
3-opt algorithm for DARP, where a 3-opt neighborhood A3(s) is defined and searched in
a fixed, systematic way, again in first-improvement style. This neighborhood is created
by inserting three rather than two "breaks" in a tour. 3-opt is much slower than 2-opt,
more than 100 times as slow for N = 50, but it is much more effective, even when 2-opt
is given equal time to generate multiple random starting tours and then complete its
improvement scheme.

Psaraftis (1983) was the first to study 2-opt and 3-opt algorithms for DARP. He
studied tours up to size N = 30, reporting that at that size, 3-opt tours are about 30%

10

Table 1: Weight Vectors for Learned Value Functions.

Value
Function Weight Vector

V <.951, .033,.0153 >
V20 < .981, .019, .00017 >
V30 < .984, .014, .0006 >

V40 < .977, .022, .0009 >
V50 <.980, .019,.0015 >

Veo < .971, .022, .0069 >

bias weight and features developed from the following base features: 1) normcostN{s) =
c(s)/SteinN; 2) normhood^ = \A(s)\/aN, where a# is a normalization coefficient de-
fined below; and 3) normproxN, which considers a list of the iV/4 least expensive edges
of the distance matrix, as follows. Let e be one of the edges, with endpoints u and
v. The normproxfj feature examines the current tour, and counts the number of sites
on the tour that appear between u and v. normprox^ is the sum of these counts over
the edges on the proximity list divided by a normalizing coefficient b^ described be-
low. Our function approximator is then given by WQ + normcost^ j'(normhood^wi +
normproxN/{normhoodN)

2
W2- The coefficients a^ and b^ are the result of running-

linear regression on randomly sampled instances of random sizes to determine coeffi-
cients that will yield the closest fit to a constant target value for normalized neigh-
borhood size and proximity. The results were aN = .383N2 + .28.5N - 244.5 and
bN = A3N2 + .736iV - 68.9y/~N + 181.75. The motivation for the quotient features
comes from Healy and Moll (1995) who found that using a similar term improved 2-opt
on DARP by allowing it to sacrifice cost improvements to gain large neighborhoods.

1.4 Experimental Results

Comparisons among algorithms were done at five representative sizes N = 20, 30, 40, 50,
and 60. For the learning phase, we conducted approximately 3,000 learning episodes, each
one using a randomly generated instance of size selected randomly between 20 and 60
inclusive. The result of the learning phase was a value function V. To assess the influence
of this multi-instance learning, we also repeated the above learning phase 5 times, except
that in each we held the instance size fixed to a different one of the 5 representative sizes,
yielding in each case a distinct value function V/y, where N is the training instance size.
Table 1 shows the resulting weight vector < bias weight, costhood^ weight, proximityN

weight >. With the exception of the proximityN weight, these are quite consistent across
training instance size. We do not understand why training on multiple-sized instances
led to this pattern of variation.

12

Table 4: Performance Comparisons, Equalized for Running Time.

Size and Running Time
N=20 N=30 N=40 N=50 N=60

Algorithm 10 sec 20 sec 40 sec 100 sec 150 sec
2-opt 16 29 28 30 38
STAGE 18 20 32 24 27
TD(.8) e = 0 12 13 16 22 20
TD(.8) e = .01/iV 13 11 14 24 28

time, including the STAGE algorithm using linear regression with our features. We
generated 20 random instances at each of the representative sizes, and we allowed each
algorithm to run for the indicated amount of time on each instance. If time remained
when a local optimum was reached, we restarted the algorithm at that point, except
in the case of 2-opt, where we selected a new random starting tour. The restarting
regime for the learning-enhanced algorithms is the regime employed by STAGE. Each
algorithm reports the best result found in the allotted time, and the chart reports the
averages of these values across the 20 instances. Notice that the algorithms that take
advantage of extensive off-line learning significantly outperform the other algorithms,
including STAGE, which relies on single-instance learning.

1.5 Enhancing a Constructive Method using Rollouts

Here we report results using rollouts in DARP, following the approach taken by Tesauro
and Galperin (1996) to backgammon and by Bertsekas et al. (1997) to combinatorial
optimization. A rollout is a simulation of the consequences of a decision that provides
an estimate of its effectiveness. In a stochastic setting, averaging the results of many
rollouts provides a Monte Carlo estimate of effectiveness that can be used to direct
decision making. We used rollouts to enhance a constructive algorithm for DARP in
which tours are constructed by sequentially inserting pairs of sites (a pick-up site and its
corresponding drop-off site). At each iteration of a constructive algorithm, a site pair is
selected from those not already in the partial tour. This pair is then inserted into the
partial tour according to some rule-. If we assume that the rule for inserting a pair is given,
then the algorithm has to decide which pair to select at each iteration. We used rollouts
to make these decisions. For each candidate pair, the current partial tour is completed by
first inserting that pair according to the given rule and then completing the schedule using
some heuristic decision process. This constitutes a rollout. Only one rollout is needed for
each candidate pair since the construction process is deterministic. Then the pair whose
rollout led to the shortest tour is inserted, and the process repeats from the resulting
partial tour until a complete tour is obtained. Bertsekas et al. (1997) showed that the
resulting algorithm is always better than or equal to the heuristic decision process it uses

14

Table 6: Performance of the Rollout Method based on PI-Farthest for Sizes
TV = 20 and 30. Entries are percentage above Stein^ averaged over
100 random instances of size N.

N=20 N=30
min -11.18 -10.77
mean 1.84 1.63
max 15.33 15.56
std 5.04 3.91
time (per tour) 98 sec 756 sec

benefit was gained when we used rollouts to select the first site pair to insert, with the
benefit decreasing as rollouts were used to make later decisions. Note, however, that using
rollouts for later decisions takes less time than for earlier decisions since each rollout is
shorter. Doing rollouts at the start to make the first decision has time complexity 0(nA)
while still showing a significant improvement over pi-farthest at size n = 20, but we did
not test this for larger n.

Table 7: Performance with Rollouts used for the First Decision Only for
Size N = 20. Entries are percentage above Stein^ averaged over
100 random instances of size N.

N=20
min -15.05
mean 3.26
max 16.11
std 6.20
time (per tour) 10 sec

We also performed a number of learning experiments where the goal was to learn
state-action values (Q-values) for pair selection. We tried numerous variations, includ-
ing different feature sets and function approximation methods. Some of these methods
learned to perform as well as Pi-farthest (in fact some learned to do the same thing
as Pi-farthest), but no results were particularly better than Pi-farthest. There is much
more that could be done here.

1.6 The Expected Improvement Algorithm

Here we describe the expected improvement algorithm, an algoritm we designed in an
attempt to improve over Boyan's (1998) STAGE algorithm. Although our experimental

16

1. Start a new trajectory from a random solution in the set of feasible solutions. Call
this starting point SQ. >,'■

2. Hill-climb on the cost function to a local optimum. Suppose hill-climbing traverses
solutions S\,...,Sn and arrives at a solution with cost C.

3. Add the cost hill-climbing data to the training data and retrain the learned hill-
climbing function. For STAGE this means adding the training pairs Si —> C to
the data set and refitting the data, e.g. by polynomial regression. Learning the
expected improvement function from a set of hill-climbing data is described below.

4. Hill-climb on the learned function to a local optimum.

5. If learned function hill-climbing went anywhere, i.e., did not start at a local op-
timum, then continue with cost hill-climbing (step 2). Otherwise, start a new
trajectory (step 1).

The learning data is accumulated from all cost hill-climbing, across trajectories. An
additional complication not listed in the algorithm is a patience parameter. In local
search, the number of solutions adjacent to a particular solution can often be very large.
Near optima of the cost function, typically only a very few neighbors will improve on the
cost of a current solution and the improvement will be small anyway. It is thus sometime
more practical to examine a random subset of the neighbors of a solution. If no better
neighbors are found in that subset, the algorithm acts as if it were truly a local optimum
and proceeds to the next step. The patience parameter, a fraction in (0,1], gives the
proportion of the neighborhood that must be examined before a solution is deemed a
local optimum. Patience= 1 corresponds to searching the entire neighborhood.

We could try to learn EI(s, b) in typical supervised-learning fashion. At any point
during cost hill-climbing we are at some solution s and have best-so-far solution b. Cost
hill-climbing from s yields some outcome x, which we use to construct a single training
sample for the El function:

, ,v [b — x if b> x
(s'6)-*{o. if&<*.

However, this makes rather inefficient use of the hill-climbing information. Once we
have a reasonably good solution, the observed improvements will nearly always be zero.
Further, the observed hill-climbing outcome x could equally well be used to update our
estimate of El for any b' ^ b, because the outcome of hill-climbing is independent of b.
We are currently investigating a technique that would allow us to update El for all V,
but take a simpler approach in this paper.

We assume that the outcome of cost hill-climbing from a state, CH{s) has a Gaussian
distribution. We use the cost hill-climbing data to learn estimates for the first and second
moments of CH(s), which determines the mean (/z) and standard deviation (a) of the

18

Table 8: Expected Improvement Algorithm Results on DARP: Best Solu-
tion Statistics Listed as Percentage Over Stein Estimate

patience = 1.0 instances = 1 ...25
mean max min std 2*std/V25

S/LR
S/QR
EI/LR
EI/QR

6.88
16.74
20.60

7.82

48.02
65.71
32.90
29.83

-7.14
-0.66
8.40

-3.22

14.51
16.89
6.29
8.01

5.80
6.75
2.51
3.20

patience = 0.9 instances = 1 ..25
mean max min std 2*std/\/25

S/LR
S/QR
EI/LR
EI/QR

4.78
15.03
15.49
8.03

21.42
26.04
30.50
13.74

-4.08
0.0

0.10
-1.52

6.57
7.03
8.63
4.46

2.62
2.81
3.45
1.78

Datience = 0.5 instances = 1 ..22
mean max min std 2*std/\/22

S/LR
S/QR
EI/LR
EI/QR

0.65
8.00

22.28
8.77

9.57
20.32
34.49
16.21

-4.70
0.44

11.76
-1.18

3.66
4.87
6.01
5.13

1.56
2.07
2.56
2.18

] patience = 0.2 instances = 1. ..30
mean max min std 2*std/\/30

S/LR
S/QR
EI/LR
EI/QR

3.94
10.32
25.44
12.21

15.05
19.78
39.37
26.97

-4.66
0.077
15.31

1.39

4.59
4.97
6.48
5.84

1.67
1.81
2.36
2.13

20

2 Planning and Re-Planning with Temporal Abstraction

Fundamental to the theory of systems and control is the problem of representing knowl-
edge about the environment and about possible courses of action at a multiplicity of
interrelated temporal scales. For example, a human traveler must decide which cities to
go to, whether to fly, drive, or walk, as well as the individual muscle contractions involved
in each step. In military planning and execution, decisions are obviously made at dif-
ferent levels of temporal detail at different levels in the chain of command. Appropriate
temporal abstractions can enable complex problems to be represented at a higher level
that involves fewer states, fewer choices, and fewer steps. Formulating such abstractions
has been the objective of a large and diverse body of work in control systems, artificial
intelligence, and operations research.

We made significant progress in formulating and solving problems of temporal ab-
straction within the framework of RL. We formulated a generic concept of temporally
extended "courses of action," called options, which includes both primitive control ac-
tions as well as temporally extended courses of actions. Options are essentially the same
as the variable-duration actions of a semi-Markov decision process (SMDP), but they are
superimposed on a a low-level Markov decision process (MDP) taking whose actions are
at a much finer time scale. By taking both perspectives on a single system we are able
to analyze it at higher levels, yet still make changes at the lowest levels. Our formula-
tion enables options to be used in place of actions in all planning and learning processes
conventionally used in RL and dynamic programming. Options and models of options
can be learned for a wide variety of different subtasks, and then rapidly combined to
solve new tasks. Options permit planning and learning simultaneously at a variety of
times scales, and toward a variety of subtasks, substantially increasing the efficiency and
abilities of RL systems.

We illustrated this result in an abstract reconnaissance mission re-planning scenario.
An aerial sensor platform with limited fuel takes off from its base to observe as many as
possible of a set of sites, subject to random fluctuations in the availability of the sites for
observation. For example, the sites may be obscured by clouds or other weather phenom-
ena that are only partly predictable and that may change during the mission. As con-
ditions change, the remaining portion of the mission must be rapidly re-planned to take
into account the new conditions. Because of the large state space and the stochasticity,
even moderate-sized instances of this problem are intractable by conventional methods
such as dynamic programming, or even conventional RL. We have shown that by intro-
ducing options in the form of controllers for flying directly to each site, the problem can
be made vastly easier and solved at the SMDP level with modest computational effort.
When this solution is then used at the MDP level for real-time control, performance far
better than receding-horizon methods is obtained.

22

The input set and termination condition of an option together limit the states over
which the option's policy needs to be defined. For example, a handcrafted policy n for a
mobile robot to dock with its battery charger might be defined only for states J in which
the battery charger is within sight. The termination condition ß could be defined to be
1 outside of X and when the robot is successfully docked.

We can now define policies over options. Let the set of options available in state s be
denoted Os\ the set of all options is denoted Ö = Uses ®s- When initiated in a state st,
the Markov policy over options /I:5XöH[0,1] selects an option o € 0St according
to the probability distribution fi(st, •). The option o is then taken in st, determining
actions until it terminates in st+k, at which point a new option is selected, according to
/i(st+fc, •), and so on. In this way a policy over options, ß, determines a (non-stationary)
policy over actions, or flat policy, it = f(/j). We define the value of a state s under a
general flat policy it as the expected return if the policy is started in s:

V*(a) d=f E {rt+1 + jrt+2 + • • • | £(TT, S,*)},

where £(n, s, t) denotes -the event of -K being initiated in s at time t. The value of a state
under a general policy (i.e., a policy over options) /J, can then be defined as the value of

the state under the corresponding flat policy: V*(s) = V^^(s). An analogous definition
can be used for the option-value function, Q^(s, o).

2.2 SMDP Planning

Options are closely related to the actions in a decision problem known as a semi-Markov
decision process (SMDP). In fact, any MDP with a fixed set of options is an SMDP.
Accordingly, the theory of SMDPs provides an important basis for the theory of options.
We briefly review the standard SMDP framework for planning, which will provide the
basis for our extension.

Planning with options requires a model of their consequences. The standard form of
this model is given in the theory of SMDPs. The reward part of the model of o for state
s € S is the total reward received along the way:

r°s = E[rt+i + TTt+2 + ■ ■ • + lk~lrt+k [£{o,s,t)},

where £(o, s, t) denotes the event of o being initiated in state s at time t. The state-
prediction part of the model is

oo

V°ss> = ZyPrfo+fc = s',k = j\ £(o,s,t)} = E^fS^ \ S(o,s,t)},

for all s' G S, under the same conditions, where 8SS' is an identity indicator, equal to 1
if s = s', and equal to 0 else. We call this kind of model a multi-time model because it

24

compare the value of continuing with o, which is Q/J(st,o), to the value of terminating o
and selecting a new option according to ß, which is Vfl(s) = Y1& M5> o')^^» °')- K the
latter is more highly valued, then why not terminate o and allow the switch? We proved
that this new way of behaving is indeed better (Sutton et al, 1999), but this is a change
in the termination condition of o and thus requires stepping outside the existing set of
options.

We can characterize the new way of behaving as following a policy // that is the same
as the original one, but over new options, i.e., u'(s,d) = ß(s,o), for all s G S. Each
new option d is the same as the corresponding old option o except that it terminates
whenever termination seems better than continuing according to Q?. We call such a ß'
a termination improved policy of ß. We will now state a general theorem, which extends
the case described above, in that options have to be semi-Markov (instead of Markov)
and termination improvement is optional at each state where it could be done. This lifts
the requirement that Qß be completely known.

Theorem 1 (Termination Improvement) For any MDP, any set of options Ö, and
any Markov policy ß: S x Ö i—► [0,1], define a new set of options, Ö', with a one-to-one
mapping between the two option sets as follows: for every o = (J, n,ß) G Ö we define a
corresponding d = (J, 7r, ß') G Ö', where ß' = ß except that for any history h in which
Qß(h,o) < VfJ,(s), where s is the final state of h, we may choose to set ß'(h) = 1. Any
histories whose termination conditions are changed in this way are called termination-
improved histories. Let ß' be the policy over d corresponding to //: ß'(s,d) = ß(s,o),
where o is the option in Ö corresponding to d, for all s G S. Then

1. V»'(s)>V»{s) for alls 6 5.
2. If from state s G <S there is a non-zero probability of encountering a termination-

improved history upon initiating ß' in s, then V7* (s) > V,i(s).

As one application of this result, consider the case in which ß is an optimal policy for
a given set of Markov options Ö. By planning or learning we can determine the SMDP
optimal value function VQ and the optimal policy ß*0 that achieves it. This is indeed the
best that can be done without changing C?, that is, in the SMDP defined by Ö, but less
than the best possible achievable in the MDP, which is V*. But of course we typically do
not wish to work directly in the primitive options because of the computational expense.
The termination improvement theorem gives us a way of improving over ß*0 with very
little additional computational expense, by stepping outside Ö. The only additional
expense is the cost of checking (on each time step) if a better option exists, which is
negligible compared to the combinatorial process of computing Q*0.

26

while picking only from Ö. The optimal policy within 11(0) runs from landmark to
landmark, as shown by the thin line in Figure 1. This is the optimal solution to the
SMDP defined by Ö and is indeed the best that one can do while picking only from these
options. But of course one can do better if the options are not followed all the way to
each landmark. The trajectory shown by the thick line in Figure 1 cuts the corners and
is shorter. This is the termination-improved policy with respect to the SMDP-optimal
policy. The termination-improved policy takes 474 steps from start to goal which, while
not as good as the optimal policy in primitive actions (425 steps), is much better than
the SMDP-optimal policy, which takes 600 steps. The state-value functions, Vß° and
Vß for the two policies are also shown in Figure 2.

o 1
SMDP Value Function

o 1
Values with Interruption

Figure 2: Termination improvement in navigating with landmark-directed
controllers. The state-value functions for the SMDP-optimal and
termination-improved policies. Note that the latter is greater.

2.4.2 Aerial Surveillance Mission Planning Task

Figure 3 presents a more complex mission planning task which we call the Uninhabited
Aerial Vehicle (UAV) task since it was intended to represent some aspects of mission
planning for this technology. A mission is a flight from base to observe as many sites as
possible, from a given set of sites, and return to base without running out of fuel. The
local weather at each site toggles from cloudy to clear according to independent Poisson
processes. If the sky at a given site is cloudy when the plane gets there, no observation
is made and the reward is 0. If the sky is clear, the UAV gets a reward, according to
the importance of the site. The positions, rewards, and mean time between two weather
changes for each site are given in Figure 3. The UAV has a limited amount of fuel, and
it consumes one unit of fuel during each time tick. If the fuel runs out before reaching
the base, the UAV crashes and receives a reward of —100.

The primitive actions are small movements in any direction (there is no inertia). The
state of the system is described by several variables: the current position of the UAV,

28

3 Learning Subproblem Selection Techniques for Combinatorial
Optimization '*:

Divide and conquer—that is, subproblem generation, solution, and recombination—is a
standard technique in combinatorial optimization. In many divide and conquer settings
the search for suitable subproblems is itself a significant component of the technique,
and overall results can depend critically on the component subproblems that are actually
considered. For example, in a classical vehicle routing problem in Operations Research,
a fleet of vans, each with a fixed carrying capacity and each starting from a common
depot, is given the job of making deliveries to a set of sites and then returning to the
depot. The deliveries assigned to any van must not exceed that van's carrying capacity.
The problem objective is to assign deliveries to the vans so as to respect the capacity
constraints, and to route vans so as to minimize the total van travel distance. Clearly,
how sites are assigned to vans, i.e., which single van subproblems are formed, is at least
as important as the routing plan for each van.

How a problem is factored into subproblems, e.g., which sites are assigned to which
vans, is often done heuristically. Here we describe an alternative approach to subprob-
lem selection, one that uses machine learning to direct search in the space of problem
decompositions. While in principle we do not restrict the form of this search, in both
of the examples presented here we use local search over suitably formulated spaces of
subproblems.

Suppose an optimization problem P, such as the vehicle routing problem described
above, can be solved by first decomposing it into subproblems from some class C, and
then by solving those subproblems. In the example above the class C consists of single
van routing problems. Now suppose algorithm A solves instances from C. Instead of
factoring P into subproblems according to some heuristic rule, as is common practice, we
view the task of choosing a decomposition as a search problem in the space of subprob-
lem decompositions. The effectiveness of this search depends on being able to estimate
algorithm A's performance quickly on example decompositions. To accomplish this we
first identify a set of quickly computable features that capture, with some precision, the
expected behavior of A on any instance. Then, using supervised learning in an off-line
training procedure, we create A(-), an estimate of A's performance. This is done by
running A on a large corpus of examples, and then using regression to fit the feature
values of the examples to A's corresponding output values. Once constructed, we use
A—a fast, inexpensive substitute for A itself—as a cost function for hillclimbing in the
space of subproblem decompositions. When we arrive at a local optimum in "subproblem
decomposition" space, we apply A to the subproblem or subproblems associated with the
optimum, and use the results obtained to form an overall problem solution.

We illustrate our technique with two examples, graph coloring for a class of geometric
graphs, a deterministic problem, and the Multiple Uninhabited Air Vehicle (MUAV)
surveillance problem, a stochastic, traveling salesman-like problem.

30

2. Using standard first-improvement local search flow of control, hill-climb in the space
of recolor sets by repeatedly considering pairwise exchanges between a member of
the current recolor set and a member of some still-intact color class S. Exchanges
are accepted if the swap preserves the integrity of S (here: the alteration of S
should introduce no adjacencies to S, i.e., no vertices in S should be linked by an
edge), and if A's estimate of A's performance on the recolor set is improved by the
exchange.

3. When a local optimum is reached in 2), solve the subproblem by applying A to the
newly constituted recolor set.

4. Once this subproblem has been solved, combine its coloring scheme with the other
color classes (which may be slightly altered as a result of the exchange process, but
which are still legal classes) to get a complete, optimized solution to the problem.

Notice that the above formulation—selecting a subproblem by hill-climbing in sub-
problem space using a learned estimator for a known algorithm— does not depend on
the kind of graph under-consideration, and indeed does not depend on the objects being
graphs at all. In fact our methodology applies to any constrained partitioning problem
and any algorithm A that does a poor job on some of the partitions. For example, the
transformation of this methodology to classical one-dimensional bin-packing is quite di-
rect. One-dimensional bin-packing is the problem of packing items of size between 0 and
1 in as few unit-sized bins as possible, such that the items assigned to any bin sum to
a value < 1. To lift our graph coloring methodology, start with an approximation algo-
rithm A such as First-Fit-Decreasing (Papadimitriou and Steiglitz, 1982), and build an
estimator, A, for it. Apply A to pack the bins. Collect some subset of poorly packed bins
and empty their contents, forming a repacking set. Now repeatedly exchange elements
of this set for items that still reside in bins. An exchange is accepted if it maintains
the integrity of the still intact bin (the sum of that bin's contents remains < 1 after the
exchange), and if A's estimate of the repacking set improves as a result of the exchange.
When this process reaches a local optimum, apply A to this final repacking set, and
combine these bins with the previously packed bins to obtain a complete solution. In
section 4 we briefly consider a multi-knapsack packing problem, which illustrates some
complications that arise with our model.

3.1.1 Graph Coloring Results

We considered geometric graphs from the classes U^t for N = 250, 500, and 750
vertices, and for threshold t = .5. We use the DSATUR algorithm as our base graph
coloring algorithm (Brelaz, 1979). This algorithm is reported to be the best, or at least
competitive with thebest algorithms known for geometric graphs (Johnson et al, 1991).
It works as follows:

32

Table 9: Frequency of Optimization Improvement over DSATUR

Algorithm / Problem Size N = 250 N = 500 N = 750
no swapping
full optimization, RecolorClassCt = 10
full optimization, RecolorClassCt = 15

14% 22% 23%
56% 69% 75%
57% 77% 80%

Table 10: Optimization Routine Running Times, DSATUR = 1.0

Algorithm / Problem Size N = 250 N = 500 N = 750
full optimization, RecolorClassCt = 10
full optimization, RecolorClassCt = 15

1.3
2.6

1.7
3.6

1.8
7.1

Table 10 shows the running time of the algorithm at various graph sizes and different
settings of RecolorClassCt. Results are given in terms of a base running time of 1.0, at
each size, for DSATUR.

We also compared the performance of our enhanced DSATUR algorithm against pure
DSATUR on a time-equalized basis. For this comparison we set RecolorClassCt = 10
since our optimization scheme is much faster at this setting, while performance is only
slightly diminished. We compared these algorithms on 100 randomly generated examples
at three sizes. For each example we ran DSATUR from 10 random starting orders.
We recorded the best coloring found among the 10, and we also recorded the running
time for the 10 runs. We then allowed our enhanced DSATUR algorithm to run for an
equivalent amount of time. Table 11 gives the percentage of example instances on which
our optimized DSATUR algorithm colored graphs using fewer colors.

While our results for UN,.5 axe encouraging, especially in light of DSATUR's apparent
success on this class compared with other algorithms, we should point out that to be
effective, the algorithm requires a certain amount of time-consuming elaboration, which
first involves choosing appropriate features, and then requires solving several regression
problems, namely feature normalization and learning Ä off-line. Thus even a class as
closely related to UN,.5 as ^N,.9 would require at least several additional hours in order

Table 11: Enhanced DSATUR improvement frequency over pure DSATUR,
equalized for time

N = 250 N = 500 N = 750
full optimization, RecolorClassCt = 10 22% 47% 50%

34

A Cloudy Site

Plane 1

Figure 4: Depiction of an MUAV instance.

alone return) to 5.0 (enough to circumnavigative the unit-area surveillance region with
fuel to spare).

We approach this task by splitting the sites among the UAVs, creating a set of single-
UAV surveillance tasks. These single-UAV subtasks are solved by a simple heuristic
controller, which we found to be the most effective of several obvious contenders. If
possible, a UAV flies towards the nearest clear-weather site in its partition. If all the
sites are cloudy, the UAV simply flies to the nearest of those. And finally, when a UAV
has no assigned sites, it heads back to base. We call this control rule "Nearest Site,
Visible Preferred", or just NVPfor short.

The question, then, is how to divide the sites in a MUAV task among the UAVs
for solution by NVP. To do this, we first learn NVP, an estimate of the performance
of NVPon arbitrary, hypothesized single UAV instances. A local search procedure in
the space of partitions, using performance estimator NVP to evaluate components of a
candidate partition, then identifies a promising division of the MUAV instance into a
collection of single-plane problems.

To learn NVP, we generated 500 random, single-UAV surveillance problem instances,
with 6-10 sites. The number of sites, their placement in the unit square, and initial
weather conditions were all chosen uniformly randomly. The UAV was given 3.0 fuel,
and was allowed to reevaluate and possibly choose a new heading every 0.025 time units.
The home base for the UAV was at the origin, (0,0). The changes in weather at each site
occurred at discrete times according to Poisson process with parameter A = 2.0.

On each instance, we simulated one run of NVP, recording at each decision point 18
features and the total observation reward achieved from that point forward in the run.
We did a linear least-squares fit to predict the fraction of remaining reward that will be
achieved. Multiplying by the amount of remaining reward thus predicts the total obser-
vation reward. It is this linear approximation that we use to estimate the performance of
NVPon potential single-UAV subproblems resulting from the decomposition of an MUAV

36

A Cloudy Site

T
Plane 1 ^

*H HOME
BASE

Plane 2 \

A Cloudy Site

/ ^r *

A Clear Site

Figure 5: MUAV task: Before (left) and after (right) a single local search step.

partitioning was also reoptimized. We used the same local search procedure, starting
from the current partitioning. This allowed the controller of the fleet of UAVs to react
to variable performance caused by weather. For example, if one UAV had made little
progress because of cloudy weather at its sites while another had made much progress
in its partition, then sites might be reassigned to balance current loads among UAVs.
The continual optimization even allows the system to respond to changes not modelled
as part of the dynamics of the system. For instance, if we were to remove or add UAVs,
or change the sites, the system would seamlessly redivide the problem for the individual
UAVs.

We compared four different partitioning schemes on 100 random 24-site, 3-plane
MUAV instances, with different amounts of fuel. We tried partitioning based on the
linear NVPperformance estimates and also partitioning based on compactness—feature
1 in Table 12. Partitioning based exclusively on compactness means that we accepted a
single move site reassignment when by doing so we improved (reduced) the sum of the
compactness measures for the three groups of sites. Compactness-based partition was
the best heuristic method we tested, outperforming sector-based partitioning, a standard
approach in multiple-vehicle routing problems. For both, we ran trials in which the initial
partitioning was held fixed throughout the run, and trials in which the partitioning was
continually optimized.

Table 13 summarizes the results. Within each row, the boldface numbers are statisti-
cally significantly larger than the othernumbers, by a i-test at p = 0.05. Through much
of the fuel range studied, optimizing NVPled to better partitioning than did compactness-
based partitioning. At the highest levels of fuel, compactness performs a little better.
In the single-UAV trials that provided the data for the NVPestimate, the UAV always
started with 3.0 fuel. Itjs possible that adjusting this would change the range where
partitioning based on NVPperforms best.

Note also that the continual optimization of partitions yielded significant improve-
ments over sticking with initial partitionings. In this domain, redividing the full problem
into different subproblems is easy to do: there is little cost in moving a site to another

38

stochastic problem. That is, the factorization style we employed meant that we needed to
construct an estimator function via simulations for the single plane case only. The over-
all stochastic characteristics of the full MUAV are handled by the resulting single plane
estimator, combined with a nonstochastic parititioning algorithm, applied repeatedly to
respond to uncertainites as they arise. We believe this methodology holds promise for
other, similarly factorable stochastic optimization problems.

References

Boyan, J. A. (1998). Learning Evaluation Functions for Global Optimization. Ph.D. The-
sis, Carnegie-Mellon University.

Boyan, J. A., and Moore, A. W. (1997). Using Prediction to Improve Combinatorial
Optimization Search. Proceedings of AI-STATS-97.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Bertsekas, D. P. (1997). Differential Training of Rollout Policies. In Proc. of the 35th
Allerton Conference on Communication, Control, and Computing. Allerton Park, 111.

Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C. (1997). Rollout Algorithms for Combina-
torial Optimization. Journal of Heuristics.

Brelaz, D. (1979). New Methods to Color Vertices of a Graph. Communications of the
ACM, 22:251-256.

Healy, P., and Moll, R. (1995). A New Extension to Local Search Applied to the Dial-
A-Ride Problem. European Journal of Operations Research, 8: 83-104.

Johnson, D., Aragon, C, McGeoch, L., and Schevon, C. (1991). Optimization by Sim-
ulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number
Partitioning. Operations Research, 39:378-406.

Kubo, M. and Kasugai, H. (1990). Heuristic Algorithms for the Single Vehicle Dial-A-
Ride Problem. Journal of Operations Research, 33:354-364.

Papadimitriou, C. H., and Steiglitz, K. (1992). Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, Englewood Cliffs, NJ.

Psaraftis, H. N. (1983). K-interchange Procedures for Local Search in a Precedence-
Constrained Routing Problem. European Journal of Operations Research, 13:391-402.

Tesauro, G., and Galperin, G. R. (1996). On-line Policy Improvement using Monte-
Carlo Search. In Advances in Neural Information Processing: Proceedings of the Ninth
Conference. MIT Press.

Zhang, W. and Dietterich, T. G. (1995). A Reinforcement Learning Approach to Job-
Shop Scheduling. In Proceedings of the Fourteenth International Joint Conference on

40

